Developing a Computational Science IDE for HPC

OSC

Dave Hudak, Neil Ludban Vijay Gadepally, Ashok Krishnamurthy

Overview

- Overview of CSIDEs: components, examples
- Software engineering benefits of CSIDEs
- HPC CSIDEs: required functionality and examples
- ParaM: experience developing HPC CSIDE
- Software engineering challenges of CSIDE users

Computational Science IDE (CSIDE)

A suite of software tools, including

- Numeric interpreter with high-level matrix operations
- Domain-specific extensions (signal and image processing, control systems, operations research)
- Graphics and visualization
- Common user interface (usually including editor)
- Examples
 - Commercial: MATLAB, Maple, Mathematica
 - Open source
 - NumPy + SciPy + iPython + Matplotlib
 - GNU Octave + OctaveForge + GNUPlot + Emacs

Software Engineering Benefits of CSIDEs

- No steep learning curve
- Fast time to first solution, lower turnaround time
- Reasons for these benefits?
 - Interactive nature of interpreter
 - Encourages incremental development
 - Immediate debugging
 - Automatic memory management
 - Domain-specific language constructs
 - Tight integration between tools

HPC Computational Science IDE (CSIDE)

Extending CSIDE to HPC system requires

- Job control mechanism for launching a copy of interpreter on each processor
- Communication libraries for interpreters to exchange results
- Mechanism for remote control and inspection
- Examples: Matlab Distributed Computing Environment (MDCE), Star-P, iPython
- HPC CSIDEs are examples of remote interactive services
 - Remote: have to communicate across networks
 - Interactive: User gets to "drive" engines in real time, supplying input

Remote Interactive Services with "proxy"

Proxy is a "catch all" term, meaning some subset of the following functions:

- Supply network information to client for connection to engines
- Secure connection (authentication, encryption) between client and engines
- Accepting connection from client

F 1

1.1

1 1

- Multiplexing communication between client and engines
- Allocating nodes to run engines
- Starting/monitoring/stopping engines
- Remote data access and checkpointing

- Public IP Control Communication (TCP/IP)
- Private IP Control Communication (TCP/IP)
- Data Communication (Infiniband, Myrinet)

Remote, Interactive Service Examples

		MATI	_AB	Star-P	Eclipse PTP	iPython		
		DCT/I	DCE					
Client	 	MATLAE Distribut Computi Toolkit	ed	MATLAB with Star-P Toolkit	Eclipse PTP	iPython Remote Controller object		
Proxy		Schedul Manage smpd		Admin Server HPC Server	PPT ORTE Proxy	ipcontroller		
Engines		MATLAE	3 DCE	Star-P Processors	gdb processes	ipengine		
	1 1						OSC	

ParaM - HPC CSIDE Distribution

http://www.bluecollarcomputing.org

Paramake - installer for bcMPI

 UNIX tools, OpenMPI, bcMPI library, bcMPI toolbox, examples, GNU Octave (with vendor BLAS and fftw) if desired

bcMPI features

- Runs on UNIX: tested on Linux, NetBSD, MacOS X
- API "reasonably compatible" with MatlabMPI
 - bcMPI tags are numeric, MatlabMPI alphanumeric
- Broadcast, barrier, reduce operations
- bcMPI supports synchronous or asynchronous sends
 - MPI_Buffer_attach, MPI_Buffer_detatch, MPI_Probe
- MPI communicator support (new in v1.1)
- Supports many MATLAB data types, but no sparse support
- MATLAB-style help for commands

ParaM - HPC CSIDE Distribution

http://www.bluecollarcomputing.org

- pMatlab PGAS library from MIT-LL
- Integration with standard HPC environments and tools
 Job control with PBS, LSF (new in v1.1)
- Remote, interactive service possible, but not planned
- ParaM cluster installations:
 - At OSC: Pentium 4 with Infiniband, AMD Opteron with Infinband (2), Itanium with Myrinet
 - OSC system administrators asked for ParaM since its process launch was integrated with batch startup/shutdown
 - At ASC MSRC: AMD Opteron with Infiniband
 - At ARL MSRC: AMD Opteron with Myrinet

Software Engineering Challenges of HPC CSIDEs

- User community immune to software engineering
 - CSIDE users don't think of themselves as "programmers"
 - ParaM developed with source control, regression tests, documentation. Users did not understand those concepts!
- Environment mismatch
 - Users: Windows and Web
 - HPC: UNIX and CLI
- Integration is key: standalone solutions to "run parallel MATLAB" not enough: need domain libraries, graphics
- Underestimated user's ability to do system installation complete package management system is required

Conclusions

CSIDE benefits appealing to users

- Problems of moving CSIDEs to HPC systems
 - Technical problems: job launch, control, remote communication
 - Software engineering problems: getting CSIDE users to understand the environment
- ParaM is a first step
 - Job control, interprocessor communication, installer
 - Remote interactivity, performance transparency, move installer to package manager all required

